A Method with Parameter for Solving the Spectral Radius of Nonnegative Tensor

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Perturbation Bound for the Spectral Radius of a Nonnegative Tensor

Abstract. In this paper, we study the perturbation bound for the spectral radius of an mthorder n-dimensional non-negative tensor A. The main contribution of this paper is to show that when A is perturbed to a non-negative tensor à by ∆A, the absolute difference between the spectral radii of A and à is bounded by the largest magnitude of the ratio of the i-th component of ∆Axm−1 and the i-th co...

متن کامل

A new bound for the spectral radius of nonnegative tensors

By estimating the ratio of the smallest component and the largest component of a Perron vector, we provide a new bound for the spectral radius of a nonnegative tensor. And it is proved that the proposed result improves the bound in (Li and Ng in Numer. Math. 130(2):315-335, 2015).

متن کامل

On the spectral radius of nonnegative matrices

We give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.

متن کامل

Bounds for the Z-spectral radius of nonnegative tensors

In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581-1595, 2013), He and Huang (Appl Math Lett 38:110-114, 2014), Li et al. (J Comput Anal Appl 483:182-199, 2...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Operations Research Society of China

سال: 2016

ISSN: 2194-668X,2194-6698

DOI: 10.1007/s40305-016-0132-4